ISOPHELLIBILIDINE, A NEW ALKALOID OF PHELLINE BILLIARDIERI : STRUCTURE AND HEMISYNTHESIS

Nicole LANGLOIS

Institut de Chimie des Substances Naturelles CNRS 91190 - Gif, Yvette, France

<u>SUMMARY</u> : Structure <u>3</u> proposed for isophellibilidine is confirmed by partial synthesis from the major alkaloid of <u>Phelline billiardieri</u>.

The inspection of the structures of the alkaloids present in several species of Cephalotaxus^{1,5} and biosynthetic studies⁶ show that homoerythrina alkaloids as <u>1</u> and esters of cephalotaxine <u>2</u> which possess significant antitumour activity⁷ are probably derived from a common biogenetic precursor.

Several homoerythrina alkaloids isolated from <u>Cephalotaxus</u> were previously found in <u>Phelline</u> comosa, the first species of <u>Phelline</u> collected in New Caledonia⁸. The biogenetic relationship between <u>1</u> and <u>2</u> prompted us to investigate new species as <u>Phelline</u> <u>billiardieri</u>^{9,10}.

During this study, a new alkaloid $\underline{3}^{11}$ was isolated from the chloroform extract. High resolution mass spectroscopy of $\underline{3}$ shows it to be isomeric with phellibilidine $\underline{4}^{9b}$ (MW 305, $C_{17}H_{23}NO_4$). Moreover several peaks are common to the spectra of $\underline{3}$ and $\underline{4}$ (m/z : 178, 247, 274) indicating the same partial structure A^{9b} :

The i.r. absorption at 3380 cm⁻¹ agrees with the presence of a hydroxyl group ; absorption at 1745 cm⁻¹ can be attributed not to an unconjugated ester or δ -lactone but rather to an α,β -unsaturated δ -lactone also compatible with the UV and NMR data : PMR spectrum discloses the presence of two trisubstituted double bonds in addition to a methoxyl group and two

protons of an AB system (3.82 and 3.96 ppm, attributed to $-CH_2-0$); the ^{13}C NMR spectrum is very characteristic : comparison between the spectra of 3 and phellibilidine 4 (table 1) shows that the signal of C_{13} is strongly shifted downfield in 3. This high chemical shift (94.8 ppm) is in good agreement with a substitution by an oxygen atom of a χ -lactonic ring as, for example, in loliolide 13,14 . It is also noteworthy that the chemical shift of the methylen $CH_2-0-(C_{18})$ is smaller in 3 than in 4 and this point can be explained by the presence of a primary alcohol in the alkaloid 3 [the latter is confirmed by the downfield shift of the AB system (4.10 and 4.60 ppm) in PMR of the corresponding acetate 5].

	c ₃	с ₅	с _б	с ₈ с ₁₀	с ₁₃	°14	с с ₁ с ₁₅	с ₁₆	с ₁₈	оснз
3	72.9	65.1	140.8	49.2 46.7	94.8	166.1	120.2 118.7	172.5	67.1	56.2
4	73.6	68.2	140.5	49.8 48.0	70.3	159.9	120.0 119.3	164.1	76.9	56.2

Table 1 (Brucker HX90E ; $CDC1_3$, δ/TMS)

The spectral data of isophellibilidine led to propose the plane structure 3 and allow to assign the pseudo-equatorial position of the methoxyl group at C_3^{15} .

The interconversion of the alkaloids $\underline{4}$ and $\underline{3}$ was attempted to verify their common configuration at spiro carbon C_5 but trans lactonization experiments 16,17 were unsuccessful.

On the other hand, LAH reductions of $\underline{3}$ and $\underline{4}$ did not lead to the same compound : the alkaloid $\underline{3}$ gave rise to the corresponding triol $\underline{6}$ while $\underline{4}$ afforded the diol $\underline{7}$.

Partial synthesis of isophellibilidine $\underline{3}$ was finally achieved starting from $\underline{8}$, the major alkaloidal constituent of Phelline billiardieri^{9a}.

Compound <u>8</u> treated with KOH/MeOH 1M at room temperature led to the dienic salt <u>9</u> and then to the acid <u>10</u> (85%)¹⁸. This fragmentation reaction is therefore much easier than with the bicyclic lactone <u>11</u> in which the abstraction of a proton α to the carbonyl was promoted by a strong base like LDA¹⁷.

Treatment of acid <u>10</u> with mercuric acetate (THF) afforded the mercuric derivative <u>12</u>, after brine addition. The stereospecificity of this step agrees with the configuration indicated at C_{13}^{21} . Mercuric derivative <u>12</u> in DMF solution was treated by NaBH₄/O₂ as described²² to give a product of reduction <u>13</u> (18%)²³ in addition to isophellibilidine <u>3</u> itself (53%, comparison of mp, (α), and IR, UV, DC, PMR and mass spectra). This result confirms the structure of this new alkaloid and the configuration at C₃ and C₅.

<u>ACKNOWLEDGEMENTS</u>: The author wishes to thank Dr. T. Sévenet for the collection of plant material and Drs. S.K. Kan and R.Z. Andriamialisoa for PMR measurements at 400 MHz^{24} .

REFERENCES AND NOTES :

- 1. R.G. Powell, Phytochemistry, <u>11</u>, 1467 (1972).
- R.G. Powell, K.L. Mikolajczak, D. Weisleder and C.R. Smith Jr., Phyto-Chemistry, <u>11</u>, 3317 (1972).
- H. Furukawa, M. Itoigawa, M. Haruna, Y. Jinno, K. Ito and S.T. Lu, J. Pharmacol. Soc. Japan, <u>96</u>, 1373 (1976).
- 4. Ma Guang-En, Lin Lung-Tse, Chao Tse-Yuan, Fan Hsueh-Chen, Hua Hsueh and Hsueh Pao, cf. Chem. Abstr., <u>89</u>, 193837x (1978).
- 5. Chih Wu Hsueh Pao, 22(2), 156 (1980) cf. Chem. Abstr., 93, 235142g (1980)
- 6. a) R.J. Parry and J.M. Schwab, J. Amer. Chem. Soc., <u>97</u>, 2555 (1975);
 b) R.J. Parry, M.N.T. Chang, J.M. Schwab and B.M. Foxman, J. Amer. Chem. Soc., <u>102</u>, 1099 (1980).
- 7. a) R.G. Powell, D. Weisleder, C.R. Smith Jr. and J.A. Wolff, Tetrahedron Letters, 4081 (1969); b) R.G. Powell, D. Weisleder and C.R. Smith Jr., J. Pharm. Sci., <u>61</u>, 1227 (1972); c) K.L. Mikolajczak, J. Pharm. Sci., <u>63</u>, 1280 (1974); d) Chen-Sui-Ting, Hua Che, Hsi, Shen K'o Hsueh Tung Pao, <u>25</u>(18), 859 (1980). cf. Chem. Abstr., <u>94</u>, 234v (1981).
- N. Langlois, B.C. Das, P. Potier and L. Lacombe, Bull. Soc. Chim., 3535 (1970).
- 9. a) Hoang Nhu Mai, N. Langlois, B.C. Das and P. Potier, C. R. Acad. Sci., série C <u>270</u>, 2154 (1970); b) M.F. Séguineau and N. Langlois,

Phytochemistry, 19, 1279 (1980).

- 10. N. Langlois and D. Debourges, to be published.
- 11. $\underline{3}$: mp 132°; $(\alpha)_{D}$ 204° (CHCl₃ C=1.2); UV (EtOH, $\lambda_{\max} \operatorname{rm}(\mathcal{E})$: 213(9500), 280(2200); CD (EtOH), $\lambda_{\max}(\Delta \mathcal{E})$: 210(+28), 243(-7.8), 275(+ 4.2)¹²; MS(m/z): 305(M⁺), 274, 247(100%), 230, 216, 188, 178, 170, 148, 132, 120, 118. PMR(400 MHz, CDCl₃ $\delta/\operatorname{TMS}$): 5.60 (1H, s, C₁₅-H); 5.54 (1H, m, C₁-H); 3.96 (1H, d, J_{18a,18b} = 12 Hz, C₁₈-H_a); 3.82 (1H, d, J=12 Hz, C₁₈-H_b); 3.58 (1H, m, C₃-H_{ax}); 3.41 (3H, s, OCH₃); 2.66 (1H, br d J_{2a,2b}=16 Hz, C₂-H_a); 2.56 (1H, dd, J_{4eq}, 4ax⁼¹² and J₃, 4eq^{=3.5}, C₄-H_{eq}); 1.97 (1H, m, C₂-H_b); 1.50 (1H, dd, J_{4eq}, 4ax^{~ J}₃, 4ax ~ 12 Hz, C₄-H_{ax}).
- 12. I. Uchida and K. Kuriyama, Tetrahedron Letters, 3761 (1974).
- 13. R. Hodges and A.L. Porte, Tetrahedron, 20, 1463 (1967).
- F.W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Heyden and Son, p. 183 (1978).
- 15. The coupling constant $J_{3,4ax}^{=12}$ Hz agrees only with the presence of a pseudo-axial hydrogen at C_3 .
- E.J. Corey, D.J. Brunelle and K.C. Nicolaou, J. Amer. Chem. Soc. <u>99</u>, 7359 (1977).
- 17. J.V. Frosch, I.T. Harrison, B. Lythgoe and A.K. Saksena, J. Chem. Soc. Perkin I, 2005 (1974).
- 18. $\frac{10}{10}$:mp 215°; IR : 1690 cm⁻¹; MS(m/z): 289(M⁺), 274, 258, 244, 186, 178, 170, 146(100%), 132, 120; PMR(60 MHz): 9.27(C0₂H); 5.50 (2H, s+m, C₁₅-H + C₁-H); 4.99 and 4.90 (2H, C₁₈-H_a and C₁₈-H_b); 3.30 (3H, s, 0CH₃); 1.24 (1H, dd, J_{4ax}, 4eg⁼¹² Hz, C₄-H_{ax}).
- 19. H.C. Brown and P. Geoghegan, Organometal in Chem. Synthesis, <u>1</u>, 7(1970).
- 20. P. Mangeney, Thèse de Doctorat d'État, Orsay (1979).
- 21. <u>12</u> (single TLC spot) was isolated in 93% yield : IR : 1745 cm⁻¹; MS (m/z) : 525, 523 (M⁺·). The examination of molecular models, with the azepino ring in pseudo-chair conformation, shows that one side of the double bond is less hindered and indicates the stereochemistry of the oxymercuration reaction.
- 22. C.L. Hill and G.M. Whitesides, J. Amer. Chem. Soc., <u>96</u>, 870 (1974).
- 23. $\underline{13}$:mp 80°; $(\alpha)_{D}$ 181° (CHCl₃ C=0.3); IR : 1750 cm⁻¹; UV(EtOH): 216, 280 nm; CD(EtOH) : 210(+), 245(-), 284(+); MS(m/z): 289 (M⁺), 274, 258, 231 (100%), 216, 214, 188, 170, 160, 148, 132 ; PMR (400 MHz): 5.54 (1H, m, C₁-H); 5.48 (1H, s, C₁₅-H); 3.52 (1H, m, C₃-H_{ax}); 3.39 (3H, s, 0CH₃); 1.69 (3H, s, C₁₃-CH₂); 1.51 (1H, dd, J ~ 12 Hz, C₄-H_{ax})
- 24. M. Lounasmaa et S.K. Kan, Tetrahedron, <u>36</u>, 1607 (1980).

(Received in France 26 March 1981)

2266